Textural, Compositional, and Sulfur Isotope Variations of Sulfide Minerals in the Red Dog Zn-Pb-Ag Deposits, Brooks Range, Alaska: Implications for Ore Formation

نویسندگان

  • K. D. KELLEY
  • D. L. LEACH
  • C. A. JOHNSON
  • J. L. CLARK
  • W. I. RIDLEY
چکیده

The Red Dog Zn-Pb deposits are hosted in organic-rich mudstone and shale of the Mississippian Kuna Formation. A complex mineralization history is defined by four sphalerite types or stages: (1) early brown sphalerite, (2) yellow-brown sphalerite, (3) red-brown sphalerite, and (4) late tan sphalerite. Stages 2 and 3 constitute the main ore-forming event and are volumetrically the most important. Sulfides in stages 1 and 2 were deposited with barite, whereas stage 3 largely replaces barite. Distinct chemical differences exist among the different stages of sphalerite. From early brown sphalerite to later yellow-brown sphalerite and red-brown sphalerite, Fe and Co content generally increase and Mn and Tl content generally decrease. Early brown sphalerite contains no more than 1.9 wt percent Fe and 63 ppm Co, with high Mn (up to 37 ppm) and Tl (126 ppm), whereas yellow-brown sphalerite and red-brown sphalerite contain high Fe (up to 7.3 wt %) and Co (up to 382 ppm), and low Mn (<27 ppm) and Tl (<37 ppm). Late tan sphalerite has distinctly lower Fe (< 0.9 wt %) and higher Tl (up to 355 ppm), Mn (up to 177 ppm), and Ge (426 ppm), relative to earlier sphalerite. Wide ranges in concentrations of Ag, Cu, Pb, and Sb characterize all sphalerite types, particularly yellow-brown sphalerite and red-brown sphalerite, and most likely reflect submicroscopic inclusions of galena, chalcopyrite and/or tetrahedrite in the sphalerite. In situ ion microprobe sulfur isotope analyses show a progression from extremely low δ34S values for stage 1 (as low as –37.2‰) to much higher values for yellow-brown sphalerite (mean of 3.3‰; n = 30) and red-brown sphalerite (mean of 3.4; n = 20). Late tan sphalerite is isotopically light (–16.4 to –27.2‰). The textural, chemical, and isotopic data indicate the following paragenesis: (1) deposition of early brown sphalerite with abundant barite, minor pyrite, and trace galena immediately beneath the sea floor in unconsolidated mud; (2) deposition of yellow-brown sphalerite during subsea-floor hydrothermal recrystallization and coarsening of preexisting barite; (3) open-space deposition of barite, red-brown sphalerite and other sulfides in veins and coeval replacement of barite; and (4) postore sulfide deposition, including the formation of late tan sphalerite breccias. Stage 1 mineralization took place in a low-temperature environment where fluids rich in Ba mixed with pore water or water-column sulfate to form barite, and metals combined with H2S derived from bacterial sulfate reduction to form sulfides. Higher temperatures and salinities and relatively oxidized ore-stage fluids (stages 2 and 3) compared with stage 1 were probably important controls on ©2004 by Economic Geology Vol. 99, pp. 1509–1532 †Corresponding author: e-mail, [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genesis of the Kishan Pb-Zn mineralization, western Iran based on mineralogy, fluid inclusion and sulfur isotope evidences

Kishan lead-zinc deposit is one of the Malayer-Esfahan metallogenic belt deposits, located NW Arak, Markazi Province. The fluid inclusion microthermometry of the primary liquid-vapor bearing fluid inclusions trapped in the cogenetic quartz veins exhibited a homogenization temperature ranges from 140 and 272 °C (average 208.47 °C from 68 fluid inclusions), corresponding with the salinity of 10 t...

متن کامل

زمین‌شناسی، کانی‌سازی و ژئوشیمی تکI ، کانسار ماسیوسولفید پلی‌متال (Cu-Zn-Au-Ag-Pb) تکنار، خراسان- بردسکن

Rock unites which are exposed in Tak-I mine area are: Taknar formation (Ordovician), Mid-late Paleozoic and younger intrusive rocks. Taknar formation consists of sericite schist, chlorite schist, chlorite-sericite schist and some meta-diabase- gabbro-diorite. Taknar Polymetal (Cu-Zn-Au-Ag-Pb) Massive sulfide deposit formed at certain horizon of Taknar formation. Three style of mineralization ar...

متن کامل

Mineralogy and chemical variations of Sulfosalts of epithermal deposit of Ay-Qalasi (southeast of Takab, northwest of Iran)

The Ay Qalasi Pb-Zn (Ag) epithermal deposit is located in the south east of Takab, northwest of Iran and is formd at the Urmia-Dokhtar magmatic belt and the Sanandaj-Sirjan zone intersection. Based on microscopic and EPMA analysis, the composition of this series is tennantite-tetrahedrite. These minerals are mainly replaced in host minerals. The EPMA analysis data show that their chemical compo...

متن کامل

کانسار‌های لایه کران روی و سرب با سنگ میزبان رسوبی عمارت و موچان: داده‌های جدید و برداشت‌هایی از چگونگی پیدایش

The Emarat and Muchan zinc-lead ore deposits are located in southwest of Arak within the middle part of the Malayer-Esfahan belt. These deposits have formed as stratabound within carbonate strata of Lower Cretaceous. Mineralization in these deposits is mainly open space filling, which consists of sphalerite, galena, pyrite and minor quantities of chalcopyrite associated with host rock silicific...

متن کامل

Geochemical Distribution of Heavy Metals and Assessment of Environmental Indicators in Chah-Shaljami Polymetal Ore deposit, South of Birjand, Iran

The Chah-Shaljami polymetal ore deposit contains heavy metal anomalies in various mineralization zones. Geochemical distribution and correlation of elements in surficial soilsindicate that sulfide, sulfate, sulfosalt and silicate mineral occurrences (e.g. Pyrite, chalcopyrite, galena, sphalerite, molybdenite, enargite, hornblend and biotite) in mineralization and stockwork zones resulted in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005